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ABSTRACT

The conditions for uniqueness of solutions to the barotropic vorticity equation within a limited region are
discussed, in particular for cases with flow through the boundary, when no physical boundary conditions exist.
Two different sets of boundary conditions are given, for which the solution will remain uniquely defined as long as
certain of its derivatives are bounded. A small perturbation on the initial solution will then also remain small, and
the problem is thus properly posed. It is furthermore shown that similar coneclusions may be drawn for the finite-

difference vorticity equation of the ‘leapfrog”

type, based on the symmetric-conservative Jacobian suggested by

Arakawa and the normal five- or nine-point Laplacian, if in addition two stability conditions are satisfied, one of them
being essentially the condition suggested by Charney, Fjortoft, and von Neumann,

1. INTRODUCTION

The motions of large-scale disturbances in & rotating
fluid may often be derived from the barotropic vorticity
equation for a barotropic fluid

-aa—tv%p=—J(¢,v”~l/+f)+F+D(¢) (1

where ¢2 and J are two-dimensional Laplace and Jacobi
operators, F' is a prescribed forcing function, D(¥) a
dissipation term, usually of the type —«v? (bottom-
friction case) or w»y'y (diffusion case), ¢ is the stream
function for the flow, and f the coriolis parameter.

If the region of interest is a bounded basin, which may
be plane or part of the surface of a sphere, the non-inflow
boundary condition d¢/ds=0 may be achieved by pre-
scribing =0 at the boundary. If the diffusion type of
dissipation is used, we also have the nonslip condition
dy¢/on=0 at the boundary. In other cases, the solution is
however assumed to exist at all points on the surface of a
sphere, although we are only interested in its behavior
within a restricted region. No physical arguments can
then be used to derive a necessary set of boundary
conditions. In their classical paper, Charney, Fjortoft, and
von Neumann (1950) concluded that ¥ must be known
at the whole boundary and v?y at the inflow part of the
boundary (where dy/3s>0), only on the basis of heuristic
arguments.

In section 2 of this paper it will, however, be shown
that & solution satisfying the Charney-Fjortoft-von Neu-
mann boundary conditions is actually uniquely deter-
mined, but that this is also the case if dy¢/0n instead of v2y¢
is known at inflow points. The solution is then a continuous
function of the initial data and the problem consequently
properly posed. The proof is based on a stability function,

giving an upper bound for the growth of perturbations on
the correct solution to the equation. (For the basic ideas
of this “energy method,” see Richtmyer and Morton, 1967.)
Only the plane case will be shown.

2. A STABILITY FUNCTION FOR THE BAROTROPIC
VORTICITY EQUATION

Let y=y¢°(z,y,t) satisfy (1), certain yet unspecified
boundary conditions on the boundary curve C of the
plane region R, and the initial condition ¢(z,y,0)=
¥°(z,y,0). With slightly perturbed initial and boundary
values, the solution would be y¢*(z,,6)+¢'(z,y,0), the
disturbance ¢’ satisfying the equation

2 W= I =T )ADY) (@)

where n°=V%°4f.

A suitable measure of the intensity of the disturbance
is its root-mean-square vorticity or root-mean-square
velocity. Using the inner product symbols

(o 81= [ ot a5, tva, vo1= [ S2+32 B s,

|lel|=1oy, @', and ||Val|=([Ve, Vo],
the symmetry property of the Jacobian

J(,8)=—J(B,a), (3
and the integral relations
o, VBl V1= § o 32 ds @
[+4
and 2
br, I O+, S Vl=—§ pracds,  ®)
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we get the following equations for the growth rates of
these norms. For the RMS vorticity,

12 IV ==, I, I+ TGV, V)
o +¥, D)
—§ 3 OV g P HIY, T, ¥
+HW, DY), ©)
and for the RMS velocity

357 19/ lP= f v bnbtds W57

—f ¥ o s+, T 1)
+I@H, VW, DW)]
—f v bnbt+ W” b” w'v%p'ab—sww')ds
Loy, 2 V-, D). @)

To simplify the treatment, consider only the bottom-
friction type of dissipation D(y’')=—«V%'. Then, [VZy’,
D")]=—«||[v*¢'||* and

—w', DW=’ S ds—ullvv/I.

We must now derive upper bounds for the inner prod-
ucts [V, J(n%¢")] and [V, J(¥%¢")]. This can be done
in three ways.

1) From the definition of the Jacobian and the well-

known inequality 2zy Séx2+ay2 (a is an arbitrary positive

number) follows that an inner product of the type
[v,J(a,8)] satisfies the relation

by, J(@,®1<Iv, [T () 1<V, VeIV

<maz|Vel [lv], V81 < maz|Val (8)

1
sclIP+5]1v8l e

where
V| =((2afoz)*+(dafOy)?) 2.

2) By partial integration, an inner product of the type
[v28,J(a,8)] can be transformed to yield

(78, Ja == $87(a 32)+(5v87+8V8 )3

+ovevsaes [((GD) -G Dozon

L2636 (Ve _ D
0xdy \0y* oz’

and the Iatter integral is less than 14 &) («)(|V8||? where
@ (a) is the total deformation for the field «.
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3) The third type of upper bound is a modification
of type 1). It uses the fact that for some Ay,

1VBI1° < Nl V7812 (10)
if =0 at the boundary of the closed region R, so that

(976, J o, B)] Shwemaz [Val I%6IP. (1)

With the first type of estimate, we obtain from (6), (7),
and (8)

3 2 IV P+llv [P <Lk maziv
X(3 ¥ IP+allvw () (2)
2 2 119v/ P+ v 1V < i masiow
26t N =0T e
X(3 I IP+alwwIl) 13)

where

L=§ LW 2 P+, L= fw' a4

12 ’ ’ ’ alﬁ'
+2 14 —y'vy s (llf"-Hf )+ 3 ds
or if
K= [maz (7.'uz.?:|Vrl°l)”2 Kz— Jnaz (ma,zlvzp°])”2
L3 (kallvw |+ Kliww | < KSLA+ KA,
+(KE— (K VY [P+ K w1, (14)
The second type of estimate (9) gives with (7)
R AN 2T (15)
with
1=nt § v a(0, BN+ (o v+ ov Vo
AR
and

Ky=5 maz (mawﬁ (\P°))

0<t<T
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and the third type (11) combines with (6) into

%%||v2¢/||25L+(IQ—K)|IV’~I/’H“ (16)

where

Ki=\e maz (max]Vq°|>-
0<t<T \ R

Upper bounds for the norms are now easy to give if the
boundary conditions make the integrals K2I,+K:I,, I,
or I; nonpositive. One such set of boundary conditions

isy'=0; v = OWhen%‘p— 20, making I,=0, 1, <0. Equa-
tion (14) then gives

KilvW [P+ K3 lve'||*

SUEIVY PRGN exp@EK—01) (A7)

or simply, using (10),

K Yol
9P < (14 e IV I - exp (KiK. (19

Alternatively, (16) gives

V¥ [E<|Iv¥/|I_ -exp@(K.i—n)). (19)

This is not the only useful set of boundary conditions. If
¥'=0 at the whole boundary and \P =0 when —— a‘p >0,

I,=0 and ;<0 so that

W PSP - cxp@®e—n).  (20)

] S

From these inequalities two important conclusions may
be drawn:

a) If the initial perturbation ¢’(z,7,0)=0 and the
first type of boundary condition is used, we obtain
||v2¢’||2=0 for all £>0, as long as K; K; or K, is bounded.
Since y’=0 at the boundary, this implies that the dis-
turbance itself remains identically equal to zero, and it is
thus impossible to obtain more than one solution to the
equation from given initial data. With the second type of
boundary condition, we obtain the same result concerning
the uniqueness of the solution if K; is bounded, since
¥'(2,9,0)=0 then implies |[V¢’[[2=0 and thus ¢’=0 for all
t>0.

b) Any one of these inequaslities gives an upper bound
for the growth rate of a certain norm of ¥’ which is only a
function of the undisturbed solution. This guarantees that
the problem is properly posed and that it is meaningful
to search for a solution by a finite-difference technique.

3. A STABILITY THEOREM FOR THE FINITE-DIFFERENCE
BAROTROPIC VORTICITY EQUATION

The numerical method suggested by Charney et al.
(1950) for the integration of the plane, frictionless version
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of (1) was the central-difference *leapfrog’ scheme

V(ﬁ)‘I’t 1= (6)‘1’1 b =_'2Atﬂ](a) (‘I’k, V%&)‘I’k"l'f)l.l (21)

with the finite-difference Laplace and Jacobi operators
chosen as
—4¥, ;) (22)

1
Vo Vs, 1EA_82 (‘I’i+l, P TR o PTG o R

and

J & (e, B)1,5= 4A ——5 (@1, =1, ) (By, j41— B4, 5-1)
- = (o, g1, 5-1) Biyr, 5—Bs-1.9)) =J t (@, B)u,.

From a linearized disturbance equation with locally
constant coefficients, they concluded that the solution
should be stable for all Af less than a certain Al,,(As).
As shown by Phillips (1959), this conclusion is not valid
for finite disturbances. Due to the limited accuracy of the
initial data and other errors, an unlimited error growth
may thus set in after a finite integration time. By changing
the finite-difference Jacobian to the symmetric conserva-
tive form

J » (a, 8) Li= ?];‘ { Do,z(aDo. yﬂ) —Do. u(aDo,zls) +Do, y(ﬁDu,za)
—Do,o(BDo, )+ Do, 200 * Do, ,8—Dh o Dy 2B}, 5
=3I (a,B)4, ;+J*H(a, B)e, s +J (e, B)1,5}

(24)

(23)

where D, , and D,,, are central-difference operators defined
by

(o, 441 — g, j—1)

(25)

1
Do,zaf.jzz—A—s (as41,7—-1,5), Do, uamEgzg

Arakawa (1966) constructed a scheme where the errors
could not grow without limit, although it was not shown
whether or when they would remain small compared to
the exact solution. The question of stability conditions
was not discussed.

A detailed investigation of the computational sta-
bility of the finite-difference barotropic vorticity equation

(VUL — VL) =—J (BF, V'), 1+

2At
+D(3 wiy+e)) @)

will here be presented for the case when R is a rectangular
region, assuming the Jacobian to be of the symmetric-
conservative form (24) introduced by Arakawa. A similar
result may be derived for a region covered by a rhombic
(hexagonal)-rectagonal grid with the Jacobian suggested
by Sadourny et al. (1968). The idea of the proof is similar
to the one leading to the estimate (19).
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Consider for simplicity only the case D(y)= —«V* and
let B be a rectangle with sides LAs and MAs. ¥ is thus
defined on the grid (z,, y,, &), 0<i¢< L, 0<j< M, 05k<N
= T'/At where the sets of points with =0 or L and with
7=0 or M are the boundary points. At the boundary, both
¥ and v?¥ will be assumed to be known, although (19) did
only require a knowledge of V% at the inflow part of the
boundary. This assumption is made partly because of its
common use, partly because of the resulting simplifica-
tions. Some numerical boundary condition must be used
at the outflow part of the boundary, but the choice of this
additional condition should not influence the stability and
accuracy very much. (See note added in proof on page 345.)

A suitable inner product for scalars is simply

L-1 M—
(o, 8] E; ; sat,jBi,j' @7

The definition of an inner product corresponding to
[Va, V8] depends on the type of Laplace operator being
used. Since we are not considering schemes using special
formulae for points near the boundary, all operators
must be of the simplest nine-point type. The Laplacian
could then be either the five-point operator ¥?;, given by
(22), the nine-point operator ¥y, defined by

1
Vz(s) \I,t,j—_—m (‘I’i+1, j+1+‘I’t+1, -1 +‘I’i—1. j+1+‘1’i-1, i—1

FAW g1, Vo, Ve 1+ o) —207, ),  (28)

or a combination of these. The inner product [Ve, V8]
should satisfy the relation
[Va,VB]=—[a,v°8] (29)

if a==0 at the boundary. By partial summation, it is
easily shown that this is true for

—1M-1
Ve,V 58] = Z;}: g‘} AS*(Dyzau s DyoBy s+ Doy, ;- DiyBy, )

(30)
and for
1 L=1 M=1
(Voo Vo B]= [V(ma; Ve B8l +5 20 1‘2 As*(D e, 5 D+Eﬁt j

+D+na1+l.:i . D+nl3¢+1. ;) (31)

where D, and D_ denote th(;,‘forward and backward
difference operators in the z, ¥, and the two diagonal
(&, ) directions, e.g.,

Do = —Wirr 11

1 1
As Wrar, — s, 1)5D+e¢1,1"='m

—Vi.9); Doy = — (1150119

1
V2As

We want the Jacobian to satisfy relations similar to
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(3) and (5); the only possible form is thenAraka wa’s
J'@(a,B). The relation

Jio (e, B)=—J' (8, @) (32)
follows by inspection, and summation by parts gives

[v, J o (o, B)]=—18,J (33)

1(9) (a’ 7)]
provided B=+v=0 at the boundary.
The perturbation equation is now

(1+xAt) 720 ' — (1—rAt) V2 &
=—20t(J (%, ™)+ J(¥+¥", v'h)  (34)

where 7°=V¥°+f and the indices 1, 7 have been dropped.
Introduce now the magnified disturbance function

o= 14-kAt "’2
1—«kAl

satisfying the simpler equation

Je+1 sk—1

%'"))
(35)

Vo' g2 T = — oAt (J (o, i)+ T (W v

where A’f=(1—12At2)~12A¢.

Taking the inner product with V%" +v%" ™,

”VZ‘P'kHHz—HVz /k—lllzz_zA,t[vz skd1
+9 7L I, P+ I O TR (36)
or .
I —[=—20"t (M + M%) 37)
where

LF=|| V2" 24| |02 7 228 192 T (0T
+I @ v,
My =[v2%"", J (""", " )+ T, 1)),

and
Mry=[v2"* JE* 7 7Y

F[V2 " J (T VR ).
Then,

— b
L"=L1—2A’tk‘_,;l‘l,(M"l+M”2) $L1+2A’t2:(|M"ll+\M"2|).
(38)

As above, we need upper bounds for inner products of

the type [v, J (o, B)].
In the appendix is shown that

v, J o (@, B)] (39)

1 1 2 2
<7500 (glvliFelivair)
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and

b1, b, B1<5; 6@ (5 Iblallell) o)

where
G(@) En%cg:v(maz(wﬂa,lﬂ, |Dyya,4)) if the Laplacian V3 is
used and G/(a) Em,.fgx(max(lDHaz. Dyye, |, |Dysers, 1D s, 1))
if v3 is used. Also, |[Vo'||<huul||V%’|| for some Apg, sO
that we obtain the bounds
L’°2<1—2 9&5 G —‘/_Z—A’t)\,mG(nM"l))

X (|| |24 1|92 |D,  @1)

Mi< _xm(a<n°"“)+0<n°')) (9% [P4+]1v%" 7|17,  (42)

=2
and
M2<—G(‘I'°’ BT = (|| V27|24 (92T ).
(43)

If we can now find a constant C; so that

(G(wo ) +T Asme<n°">)> C>0
(44)

1— 2— ma;
As 0<v<mN

and the solution changes so little from time step to time
step that

mazr Q(-—

o w_ ov—l__ o1
o<ven  \At (\I’ Ty ¥ )>

<02‘/2 Dnas maz Gr%) (45)

where C; does not depend upon the choice of At and As,
we have

9% 2P <

+2A%¢ 02+1

VZhnaz - M2 G () 2 (9% P+ v 1)

C:+1 =y
<(142v2 22 Ay - "y =
_< + \/§ C A"\ ar mg’z G('ﬂ ) ) (46)
From this inequality and the upper bound for L!,
L' 2—C) (||| [v20"°| ), (47)

we finally obtain, in terms of the original variable ¥,

2'—01 l—KAt k 02+1 ’
0 1+m¢)(1+2‘/§ 0, & Phmas

- maz G(n*’"))k_l(l|v2\1f"HZ+HvW°||2)

V2o <

C C+1 ~ »
exp (2 (B2 VE M maz Gr7)

—c0(a)) Bat) (17 |+ 9. (48)
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For all k <N=TJ/At, this gives a bound for the norm of
V28" in terms of the corresponding norms of the initial
disturbances V2" and Vv2¥’’. This proves the stability
of the leapfrog scheme with the symmetric conservative
Jacobian as long as (44) and (45) are satisfied.

Of the stability conditions (44) and (45), the first one
is essentially the same as Charney-Fjortoft-von Neu-
mann’s heuristic stability condition. Since they are written
in terms of the disturbed stream function and the un-
disturbed vorticity fields, they have an & posterior:
character. If they are satisfied for small perturbations,
stability prevails also for finite disturbances as long as

) maaG(n”)€Nst oA mas (@ 2"
14

or

2) maaG(s?)~marG(s+1"),

but since the exact solution is unknown, it is recommended
to choose At safely below the upper bound set by the
stability conditions determined from an approximate
solution.

4, CONCLUSIONS

It has been shown that the problem of integrating the
barotropic vorticity equation within a restricted region
is actually properly posed if boundary conditions of the
Charney-Fjortoft-von Neumann type are used, but that
is also true for a different set of conditions. The solution
will be unique as long as certain derivatives of it remain
bounded, and a small error in the initial data cannot
grow with an unlimited speed. The same is true for the
finite-difference form of the equation, based on the
symmetric conservative Jacobian, at least if the region is
rectangular and both ¥ and ¥*¥ are known at the bound-
ary. Letting A¢ and As approach zero in a way that keeps
the stability conditions satisfied, it is also possible to
show that the solution actually converges to the exact
solution of the barotropic vorticity equation. These
conclusions remain valid as long as certain derivatives
of the solution remain bounded. It is, however, not
possible to say in advance whether they will be true for
all ¢ 2> 0, which is an effect of the nonlinearity of the
equation, but it is in most cases likely that the presence
of a dissipation term should prevent the occurrence. of
unlimited values for these derivatives.

5. APPENDIX
DERIVATION OF UPPER BOUNDS

To derive upper bounds for [v,Jg(e,8)] when V¥ is
used, we may write the symmetric conservative Jacobian
as

S (@, B), ;= %{ D4z, 1Do,yBis1, 5+ Dgts—1, 1 Do,y 11,5
—Dyyay, ;Do 2By, s41—Dyas, 121 Do, By, j-1+ Doy Ba, s Doz, 141
+D,yB1,51Doz0t, 5-1—D 1284, 300,y @441, 57— D42 Bi-1,4D0, 51,5

42D, 01,3 Do, 81, ;—2D0, 24, ; Do, 281,53 (49)



April 1969

~ or alternatively as
Jl(s) (“:B)i,j=%{D+zamDo,yﬁ1+1,J+D+z°l1-1,jDo,yﬁi-l.j

1
"D+y¢¥¢, /DO.::B{, I+I_D+1/ai, j—lDO,a:Bt. j-1 +K§ (51, I+ lDo,zai, I+1

—51.;—1Do.za1.j—1+31+1.1D0.uat+1,r‘ﬂi—l.;Do.uat—x,j)

42Dy 401, 3D,y 81, —2D0 vy, 1 Do o By} (50)

From (49), we then get
L-1M-1 L~1M-1
v, J (e, B))= z;, j=21 Ay, ;g (@, B4, < ; ; As?|yy, 4|

L—1M~1
IJIG» (06 5)‘ SG(s)(a) ; ]Z.:}Aszl’h.jl%{ !Do.uﬁ1+1.1|+ lDO,vﬁi—l,jl

+ [DO,Z‘ﬁi, 1+l|+ [DO,IBL j—1|+ |D+1/Bi,jl+ ID+VB1',I—'1[+ ID+Zﬁi,jl
41D 42811, 31 +2[Do,y Bs, 4| +2 Do, 2844} (51)
with

G(@) =maz(maz(|Dysac o Duser ). (52)

If 3=0 at the boundary,

23208, 4| Do, B 1, 4l< IZZAS( 17i1,2+a,D0,7131+1,j|2)
=\7§EEASZ (51& l7l.dl2+alD0.uBi,j|2) ete.

so that

b oo OIS Goof@)(g I PHellVeofll ). (33)

‘/_

An alternative bound may be obtained from (50) and
the inequalities

Do) <=8 sl + 181 11D, Do oBusl S5r1Bus. |

+ \6{. j_1D, ete.:

’DO, IIBi+1, f!
+|De, Bi-1,4]

. I—1 M-t 1
I, J (e, B)]1<E 5 (@) ; §A32171./|'6{

+[D0 261 J+II+IDO zﬂi j- 1]+ (Iﬁi j+1|+|ﬁf i- 1|+Iﬁi+l jl
+Bi-1.4)
L-1 M~—1 A

+2|Dq,,B:,5142|Do 281, 5| } LG 5y () |‘/t A {1811, 541l

i=1 j=1

F1Bis, g1+ 1Bims 41| F|Bior, -1 2185, s11]+ (B s -1

FBern 11 ) SCw @z G IMIallfll) (50
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if =0 at the boundary.
If the Laplacian V2, is used instead of Vg, it is easy
to show from

1
J (%» (a, ﬂ) =ﬁ{ D+$°‘i. 7D+v)B£+l, J+D+50‘1—1, J~1D+n3i, -1

+Deate, 31D 10Biv1, -1 Dpsio1, 1Dy s—Donateir, 1D e g
—D ey, j-1 DB, 1= Dwarir, 11D e 1
—D a0ty D 1181, 542Dy z(aDo, )4, 5— Do, (@D, :8)1, 5
+Do,y(8Do,20) 1, ;7— Do,2(BDo, @)1, 1) +4(Do, 54, 1D, 44,1
—Dha,y01,1D0,3B1,5) }
that (53) has its exact counterpart with

(55)

Goy(e)=maz(maz( Do, \Dsel, IDieal, [Diva)) - (56)

and the validity of (54) with this G(a) follows immediately.

Note added in proof: a closer study indicates that the extrapola-
tion procedure (¥2Wk) = (V3¥sH L V2Lr-1)p  —V2Fkp,, where the
indices B, B+1, B+2 denote the boundary point and the two first
interior points normal to the boundary, be a better alternative at
outflow points.
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